Abstract

The main purpose of the present work is to investigate fatigue fracture mechanical properties of aeronautical directional polymethyl methacrylate (PMMA) which has been treated by the directional tensile technology. Firstly, the fatigue cracks growth has been tracked in directional PMMA using the stroboscopic method. Then, the digital photoelasticity with a phase-shifting technique was used to measure the uniformity of the interlaminar stretching. Based on obtained experimental results, the effect of the directional stretching on fatigue fracture properties of PMMA was analyzed. Finally, fatigue fracture properties of laminated directional PMMA were discussed and compared with those of monolayer directional PMMA. Results of this work show that the lamination technology can strengthen the interlayer of directional PMMA and enhance its fatigue fracture properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.