Abstract
This study investigates the mode I intra-laminar fracture and size effect in Discontinuous Fiber Composites (DFCs). Towards this goal, the results of fracture tests on geometrically-scaled Single Edge Notch Tension (SENT) specimens are presented and critically discussed for three platelet sizes.The results clearly show a decrease in nominal strength as the specimen size increases. It is found that, when the specimen is sufficiently large, the structural strength scales according to Linear Elastic Fracture Mechanics (LEFM) and the failure occurs in a very brittle way. In contrast, small specimens exhibit a more pronounced pseudo-ductility with a limited scaling effect and a significant deviation from LEFM.To characterize the fracture energy and the effective length of the fracture process zone, an approach combining equivalent fracture mechanics and stochastic finite element modeling is proposed. The model accounts for the complex random mesostructure of the material by modeling the platelets explicitly. Thanks to this theoretical framework, the mode I fracture energy of DFCs is estimated for the first time and it is shown to depend significantly on the platelet size. In particular, the fracture energy is shown to increase linearly with the platelet size in the range investigated in this work.Another importance of this work is that, compared to traditional unidirectional composites, DFC structures exhibit higher pseudo-ductility and their strength is, by far, less sensitive to notches, defects and cracks. This aspect can be used advantageously in structural design only upon the condition that proper certification guidelines acknowledging the more pronounced quasibrittleness of DFCs is formulated. The size effect analysis presented in this work represents a first step in this direction as it allows the assessment of the severity of a defect or notch in DFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.