Abstract

Catalysts of highly dispersed gold supported on ceria were prepared by deposition precipitation method. Au is dispersed as Au0, Au+ and Au3+ species on ceria. The content of Au+ and Au3+ was highest on catalyst prepared on uncalcined ceria, which possess least ordered surface. It is inferred that oxygen vacancy on disordered ceria surface is essential for the preparation of highly dispersed gold catalysts and in stabilizing monolayer surface Au+ clusters while cationic vacancies are sites for substitutional Au3+. Au/CeO2 catalysts showed low-temperature isobutane oxidation activity with maximum conversion at 150–180°C. Ex-situ XPS results demonstrated that the low temperature isobutane oxidation activity was closely related to the content of Au+ which we interpreted as surface gold oxide formed under reaction conditions. Isobutane oxidation activity associated with ceria at temperature above 300°C was enhanced by substitutional Au3+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.