Abstract

The present paper reports on a simulation study carried out to determine and optimize the effect of the high–low junction emitter (n+-n) on thin silicon solar cell performance. The optimum conditions for the thickness and doping level of the front surface layer with a Gaussian profile were optimized using analytical solutions for a one dimensional model that takes on the theory relevant for highly doped regions into account. The photovoltaic parameters of silicon solar cells with front surface field layer (n+-n-p structure) and those of the conventional one (n-p structure) are compared. The results indicate that the most important role played by the front surface field layer is to enhance the collection of light-generated free carriers, which improves the efficiency of the short wavelength quantum. This is achieved by a drastic reduction in the effective recombination at the emitter upper boundary, a property primarily responsible for the decrease in the emitter dark current density. The findings also indicate that the solar cell maximum efficiency increase by about 2.38% when the surface doping level of the n+-region and its thickness are equal to 2.1020 cm−3 and 0.07 μm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.