Abstract

Abstract Sequencing batch reactors (SBR) treating high-strength greywater need an aerobic granular sludge (AGS) with good properties, such as a low sludge volume index (SVI) and high settling velocities and substrate uptake rates to yield short settling and aeration stages. To promote the formation of stable granular sludge, the length of the famine phase could be a key factor. In this regard, the effect of the duration of this variable on the AGS properties was assessed by comparing a gradual versus an abrupt reduction of the famine phase in two SBR treating greywater. The initial average famine phase of 3.3 h was gradually reduced to 0.3 h over 20 weeks in one reactor, and abruptly in another one. This condition induced filamentous outgrowth, as well as the deterioration on the properties of the sludge; the effect was more accelerated when the famine periods were abruptly shortened. In both cases the reduction on the famine periods induced increased organic loading rates, which led to degranulation events when it was higher than 2.5 g-chemical oxygen demand g-volatile suspended solids−1 d−1. Afterwards, the biomass adapted to this situation, by forming new small-filamentous aggregates with similar SVI to that of the stable AGS formed with the longest famine period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.