Abstract

Potassium and sodium-ion transfer kinetics were compared for the intercalation reactions into the KVPO4F positive electrode material in acetonitrile- and ethylene carbonate-based electrolytes, which implied the formation of different electrode/electrolyte interface structures. The presence of surface layers was found to result in a significantly more pronounced effect on the ion transfer kinetics for K+ compared with Na+, while the barrier layers in K+ electrolytes were demonstrated to be less resistive. Difficulties associated with the stabilization of the electrode material/potassium electrolyte interface under high operating potentials require the application of higher voltage electrolytes. The kinetic trends in three high voltage electrolytes were compared for the potassium (de)intercalation reaction, and the general obstacles to developing a high-voltage potassium-ion battery were identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.