Abstract

Prebiotic supplements are used to promote gastrointestinal health by stimulating beneficial bacteria. The aim of this study was to compare the potential prebiotic effects of fructans with increasing degrees of polymerization, namely fructooligosaccharides (FOS) and inulins with a low and high polymerization degree (LPDI and HPDI, respectively), using an ex vivo fermentation system to simulate the colonic environment. The system was inoculated with pooled feces from three healthy donors with the same baseline enterotype. Changes in microbiota composition were measured by 16S metagenomic sequencing after 2, 7, and 14 days of fermentation, and acid production was measured throughout the experiment. Alpha-diversity decreased upon inoculation of the ex vivo fermentation under all treatments. Composition changed significantly across both treatments and time (ANOSIM p < 0.005 for both factors). HPDI and LPDI seemed to be similar to each other regarding composition and acidification activity, but different from the control and FOS. FOS differed from the control in terms of composition but not acidification. HDPI restored alpha-diversity on day 14 as compared to the control (Bonferroni p < 0.05). In conclusion, the prebiotic activity of fructans appears to depend on the degree of polymerization, with LPDI and especially HPDI having a greater effect than FOS.

Highlights

  • It is generally accepted that the bacterial community in the human gastrointestinal tract has a great impact on intestinal functionality and human health.The colon is the most colonized region within the gastrointestinal tract, where 1011 –1012 cells/mL have been detected [1,2]

  • High-polymerization-degree inulin (HPDI): Orafti® HPX (BENEO-Orafti S.A., Tienen, Belgium), a high-performance inulin derived from chicory and consisting of fructose units joined by β(2-1)

  • The samples from the three donors belonged to the Firmicutes-predominant enterotype according to the MetaHit classifier, and a 1:1:1 mixture was prepared as an inoculum for all ex vivo experiments

Read more

Summary

Introduction

It is generally accepted that the bacterial community in the human gastrointestinal tract has a great impact on intestinal functionality and human health.The colon is the most colonized region within the gastrointestinal tract, where 1011 –1012 cells/mL have been detected [1,2]. Human Intestinal Tract (MetaHIT) [6] and several other studies have demonstrated the beneficial role of the normal gut microbiota in health down to the genetic level [6,7]. Most bacterial species colonizing the human gastrointestinal tract belong to the phyla Firmicutes and Bacteroidetes, while species of the phyla Actinobacteria, Proteobacteria, and Verrucomicrobia exist in lower numbers. Nutrients 2019, 11, 1293 number of bacterial species within the human intestinal microbiota has often been estimated to be in the range of 500 to over 1000 species [8]. They contribute nutrients and energy to the host via the fermentation of nondigestible dietary components in the large intestine, and a balance is maintained with the host’s metabolism and immune system [9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.