Abstract

Functionally active elongation factor Ts (EF-Ts) from Thermus thermophilus forms a homodimer. The dimerization interface of EF-Ts is composed of two antiparallel beta-sheets that can be connected by an intermolecular disulfide bond. The stability of EF-Ts from T. thermophilus in the presence and absence of the intermolecular disulfide bond was studied by differential scanning calorimetry and circular dichroism. The ratio of the van't Hoff and calorimetric enthalpies, delta H(vH)/delta H(cal), indicates that EF-Ts undergoes thermal unfolding as a dimer independently of the presence or absence of the disulfide bond. This can be concluded from (1) the presence of residual secondary structure above the thermal transition temperature, (2) the absence of concentration dependence, which would be expected for dissociation of the dimer prior to unfolding of the monomers, and (3) a relatively low heat capacity change (delta Cp) upon unfolding. The retained dimeric structure of the thermally denatured state allowed for the determination of the effect of the intermolecular disulfide bond on the conformational stability of EF-Ts, which is deltadelta G(S-S,SH HS) = 10.5 kJ/mol per monomer at 72.5 degrees C. The possible physiological implications of the dimeric EF-Ts structure and of the intersubunit disulfide bond for the extreme conformational stability of proteins in thermophiles are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.