Abstract
The influence of the dimensionless angular and linear parameters of interaction of water droplets shaped as a sphere, an ellipsoid, and a conventionally liquid disk on the characteristics (regimes) of their collisions in air (bouncing, coalescence, separation, or disruption) is studied by using a system of high-speed video recording. Conditions of sustainable implementation of this interaction are determined. Maps of the corresponding regimes are constructed and compared with available data. The characteristic sizes, the number of liquid fragments formed in collisions, and the total areas of the evaporation surface are calculated. It is demonstrated that the liquid surface area in the case of collisions of conventionally liquid disks is significantly (by several times) greater than that in the case of spherical droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Mechanics and Technical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.