Abstract

Diesel engines show poor performance and high emissions under cold-start conditions. The intake manifold burner is an effective method to increase the intake air temperature and improve engine performance. In this paper, a visualization system was employed to investigate the combustion process of the intake manifold burner. The effects of diesel flow rate and airflow velocity on combustion performance were investigated. The combustion process of the intake manifold burner showed four stages: preparing stage A, rapid development stage B, steady-development stage C, and stable stage D. Flame stripping was found in stages C and D, presenting the instability of the combustion process. With the increase in air flow velocity from 1.4 m/s to 3.0 m/s, the flame stripping was enhanced, leading to the increasing combustion instability and regular flame penetration fluctuations. The average temperature rise and combustion efficiency increased with the increasing diesel flow rate, indicating the combustion enhancement. Comparison of temperature rise and combustion efficiency under 2.0 m/s and 10.0 m/s showed that stronger cross wind enhances the heat convection, improving the temperature uniformity and combustion efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.