Abstract
Glycerol monostearate (GMS) and monoglyceride phosphate (MGP) were added to fufu flour at different levels (0.5%, 1.0% and 1.5%) in hydrated and powdered form. There were evaluated the effects of those additives on physicochemical and sensory properties of dried fufu. Addition of GMS and MGP had a significant effect on the swelling power, solubility, pasting properties and sensory quality of fufu flour. Results obtained were: Dispersibility (69%-70.33%), water absorption index (WAI, 47.7%-54.4%), least gelation concentration (LGC, 4.67%-6.67%) and water absorption capacity (WAC, 119.3%-136%) for the fufu flour treated with GMS and MGP. Solubility of the samples mixed with the powdered form of the modifier ranged between 23.2% and 31.7%, while that of the samples mixed with the hydrated form of GMS and MGP ranged between 5.3% and 12.7%. The pasting time varied between 8.25min and 18.50min, fufu flour mixed with 1.5% GMS powder had the lowest value while that mixed with 1.0% MGP powder and 0.5% hydrated MGP recording the highest value. Pasting temperature ranged from 67.00°C to 72.00°C, with flour mixed with 1.0% hydrated GMS and 0.5% GMS powder having the lowest and highest value, respectively. The highest value of peak viscosity (762.50BU) was recorded by fufu flour containing 1.0% hydrated GMS. The lowest value of starch stability (255.50BU) was recorded by fufu flour without modifier while the highest value (499.00BU) was recorded by fufu flour containing 0.5% GMS powder. There were significant differences ( p 0.05) in the sensory qualities except for colour of fufu flour samples. The overall quality index (OQI) comprised between 5.24 and 6.01, fufu sample containing 0.5% hydrated GMS had the lowest OQI and that containing 1.0% hydrated MGP the highest OQI. Addition of 0.5% texture modifier to dried fufu may be economically feasible according to the estimated cost of production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.