Abstract

In this paper, the first attempt has been made to investigate the performance of the active constrained layer damping system in the thermal environment. For such investigation, a skew laminated composite sandwich plate with carbon nanotube-reinforced composite core is considered. The nonlinear strain-displacement relations are employed to generate the initial-stress stiffness matrix and the mechanical stiffness matrices using linear strain-displacement relations. The negative velocity feedback control-law is used to control the first few modes of the vibrating sandwich plate. Comprehensive investigation has been carried out to understand influence of geometric and material parameters on the damping performance of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.