Abstract
The effects of body temperature on kainic acid-induced seizures and seizure-related brain damage were examined in rats. In rats with status epilepticus induced by intraperitoneal injection of 12 mg/kg of kainic acid (KA), ictal discharges were decreased by 50% when body temperature was lowered to 28°C and nearly abolished when body temperature was lowered to 23°C. In rats with mild hypothermia (28°C), the duration of ictal discharges following KA injection was significantly lower than in rats with normal body temperature. No detectable hippocampal cell loss was observed in rats with hypothermia to 28°C whereas gross cell loss in the hippocampus was observed in all rats with KA injection at normal body temperature. In contract to hypothermia, hyperthermia markedly aggravated the seizures and hippocampal damage induced by KA. Following elevation of body temperature to 42°C KA (12 mg/kg) resulted in severe seizures and all rats died of tonic seizures within 2 h. Furthermore, 6 mg/kg of KA administered to rats with a body temperature of 41–42°C, resulted in up to 4 h of continuous ictal discharges whereas no continuous ictal discharges were observed after the same injections in rats with normal body temperature. Histological examination in rats receiving 6 mg/kg of KA revealed severe cell loss in the hippocampus in rats with hyperthermia but not in rats with normal temperature. These results demonstrate that body temperature plays an important role in the control of epileptic seizures and seizure-related brain damage. These data suggest that hypothermia may be useful in reducing seizures and associated brain damage and that hyperthermia should be avoided in status epilepticus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.