Abstract

The influence of processing temperature on grain size reduction in AA 6063 aluminum alloy subjected to repetitive corrugation and straightening (RCS) is investigated in this work. The aluminum alloy was processed by RCS at different temperatures (room temperature, 100 °C, 200 °C and 300 °C) till the maximum number of passes possible before failure and the mechanical properties such as tensile strength and hardness were measured. The grain size and their misorientation of grains of the processed samples were analyzed using the electron backscattered diffraction. The results indicated that the transformation of low-angle grain boundaries to high-angle grain boundaries and dislocation tangles were highly dependent on the strain imparted, which could be controlled by selecting the proper processing temperature. As a result, the mechanical properties are affected. In particular, the room temperature tensile strength and hardness values of the processed material decrease with increasing processing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.