Abstract
We report the quantitative examination of the effect of distortion of potential energy surfaces and the temperature effect on photoinduced intramolecular electron transfer (PIET) as a function of electronic energy gap. The results demonstrate the importance of distorted oscillators in determining the dependence of the rate of PIET on the energy gap. This phenomenon may in some cases lead to misinterpretations of experimental data, when undistorted oscillators are assumed to be involved in the PIET process. The condition for observing the linear (rather than parabolic) dependence of the ET rate will be determined using the multimode model. The inclusion of multivibrational modes in the nuclear factors results in energy gap behavior, which is markedly different from the single mode case. Finally, a comparison between PIET and internal conversion is discussed. 25 refs., 5 figs., 3 tabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.