Abstract
HypothesisAnionic surfactants have been reported to interact with poly(N-isopropyl acrylamide) (PNIPAM), suppressing its thermoresponse. Scattering and NMR studies of the anionic sodium dodecylsulfate (SDS) system propose that the PNIPAM-surfactant interaction is purely hydrophobic. However, prior phenomenological investigations of a range of surfactant identities (anionic, cationic, nonionic) show that only anionic surfactants affect the thermoresponse and conformation of PNIPAM, implying that the hydrophilic head–group also contributes. Crucially, the phenomenological experiments do not measure the affinity of the tested surfactants to the polymer, only their effect on its behaviour. ExperimentsWe study the adsorption of six surfactants within a planar PNIPAM brush system, elucidating the polymer conformation, thermoresponse, and surfactant adsorption kinetics using ellipsometry, neutron reflectometry (NR), optical reflectometry and the quartz crystal microbalance technique. NR is used to measure the distribution of surfactants within the brush. FindingsWe find that only anionic surfactants modify the structure and thermoresponse of PNIPAM, with the greater affinity of anionic surfactants for PNIPAM (relative to cationic and nonionic surfactants) being the primary reason for this behaviour. These results show that the surfactant head–group has a more critical role in mediating PNIPAM-surfactant interaction than previously reported. Taking inspiration from prior molecular dynamics work on the PEO-surfactant system, we propose an interaction mechanism for PNIPAM and SDS that reconciles evidence for hydrophobic interaction with the observed head–group-dependent affinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.