Abstract

By exerting bending stresses on a metal surface, we show that in-plane tensile stresses can effectively promote CuO nanowire (NW) formation by significantly increasing the NW growth density during the oxidation of copper. It is found that the improved NW growth is associated with decreased size of oxide grains and increased number of grain boundaries in the underlying Cu 2O and CuO layers. These results are attributed to the effect of in-plane tensile stresses that result in fine grain structures in the underlying oxide layers, which facilitates the outward diffusion of Cu ions for enhanced oxide NW growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.