Abstract

The objective of this research work is to understand the effect of the surface charge density on the charge reversal phenomenon. To this end, we use experimental results and computer simulations. In particular, we measure the electrophoretic mobility of latex particles (macroions) in the presence of a multivalent electrolyte. We have focused on the electrolyte concentration range at which a reversal in the electrophoretic mobility is expected to happen. In particular, the role of the surface charge on the charge reversal process is looked into from several latexes with the same functional group but different surface charge densities. Although the mechanism responsible for the colloidal charge reversal is still a controversial issue, it is proved that ionic correlations are behind the appearance of such phenomenon (especially near the macroion surface). This conclusion can be inferred from a great variety of theoretical models. According to them, one of the factors that determine the charge reversal is the surface charge density of the macroions. However, this feature has been rarely analyzed in experiments. Our results appear therefore as a demanded survey to test the validity of the theoretical predictions. Moreover, we have also performed Monte Carlo simulations that take the ion size into account. The correlation found between experiments and simulations is fairly good. The combination of these techniques provides new insight into the colloidal charge reversal phenomena showing the effect of surface charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.