Abstract
The bremsstrahlung emissivity and absorption coefficient in the radiofrequency range are derived under the assumption that the electron population is not purely thermal, but presents a tail of high energy particles. This population is approximated by a two-component Maxwellian distribution and by the kappa-functions of different (integer) index. It is shown that, if the temperature ratio of the two Maxwellians is larger than 10, the absorption coefficient and the effective temperature (the quantities entering the radio transfer equation) depend only on the fraction R of particles in the highest temperature Maxwellian. In the case of kappa-functions the above quantities depend on the index n of the functions. The microwave radio spectrum is computed for different values of R and for $3 \leq n \leq 6$, finding, in all cases, brightness temperatures lower than those computed with a pure thermal distribution. This could explain some inconsistencies found between radio and EUV observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.