Abstract
The poisoning effects of two types of carbon-containing sulfides (CS2 and CH3SSCH3) on Ni/Al2O3 catalysts for the hydrogenation of benzene and cyclohexene were systematically investigated via experiments and DFT calculations. The toxicity of CH3SSCH3 is two and three times greater than that of CS2 for the hydrogenation of cyclohexene and benzene, respectively. The characterization and DFT results reveal that CH3SSCH3 dissociates easily during hydrogenation and releases CH4, allowing sulfur atoms to poison the Ni sites. However, the presence of CS2 in the hydrogenation step slows the decline in the catalytic performance, because of resistance to the direct dissociation of the strong CS bond of CS2. The chemisorbed CS2 molecules and their incomplete dissociation weaken the strength of NiS bond and decrease the poisoning effect of sulfur. The poisoning processes of two sulfides are also discussed following a DFT study. This work opens up promising possibilities for the industrial study of S-poisoning resistance in supported Ni catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.