Abstract

Aseptic loosening of the glenoid component is one of the main reasons for the high revision rates of reverse total shoulder arthroplasty (RTSA). It has been reported that the bulky implant designs may lead to stress shielding. However, it is uncertain whether the shielding effect is severe enough to lead to bone resorption and glenoid loosening. The purpose of this study was to evaluate the level of stress-shielding and assess whether bone resorption plays a role in aseptic glenoid loosening following RTSA. A cadaveric in vitro test model was used to validate a finite element model (FEM) of the scapula. The FEM of the scapula, incorporating adaptive bone remodeling algorithms, was used to predict changes in postoperative bone density after RTSA. Changes in bone strength after implantation were also analyzed. The strain values predicted from the FEM of the scapula were in agreement with the in vitro measurements. Analysis of postoperative bone adaptation revealed that strain-induced bone resorption began at the peg of the implant and around the resected bone surface and then gradually expended to the peripheral regions. The bone strength also reduced postoperatively and appeared particularly around the implant peg. Strain-induced bone resorption is a likely source of the bone loss commonly observed in RTSA. The finite element glenoid bone remodeling simulation may be used as a tool to evaluate glenoid implant design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.