Abstract

In this study, a small tensile test machine was inserted in the beam line of a tandem-type accelerator. After 2.4MeV Fe2+ ion irradiation, the microstructure and hardness changes of the specimens with and without applied stress were studied. Without stress, the formation of small interstitial-type dislocation loops was prominent in the matrix and also in the vicinity of dislocations in the Fe–1.4wt.%Mn alloy. At room temperature, radiation-induced hardening was more prominent in samples with stress than in samples without stress. However, at 563K, the effect of stress on hardness changes was minor. TEM observations showed that the applied stress reduced loop nucleation and enhanced loop growth to a degree corresponding to the microstructure at higher-temperature irradiation. This study revealed that the formation of interstitial-type dislocation loops enhanced by Mn addition was essential for irradiation hardening of these samples both with and without applied stress at higher dose levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.