Abstract

The objective of this study is to investigate the neural activities in the human brain after stellate ganglion block (SGB) treatment using functional magnetic resonance imaging (fMRI). Thirteen healthy female volunteers from the local community participated in the study. An echo planar imaging sequence for fMRI has used to examine the effect on the cerebral cortex before and after SGB stimulation at 1.5T MRI. We used 6 mL of 1 % mepivacaine hydrochloride as a local anesthetic. Two control groups with and without a saline injection were also included. FMRI data were processed using statistical parametric mapping. The blood-oxygen-level-dependent fMRI signal intensities increased in contralateral anterior cingulate cortex, hypothalamus, ventral putamen, and parahippocampal gyrus after SGB stimulation, while the signal intensities had decreased in contralateral thalamus and dorsal putamen, and ipsilateral caudate nucleus. In the saline control group, the signal intensities in ipsilateral posterior putamen and superior temporal gyrus and both insular cortices have increased significantly. The present study could show the changes by SGB in the several important brain areas associated with sympathetic nervous system. The non-invasive and repeatable imaging technique of fMRI could provide some useful information for better understanding of the neural mechanisms involved in SGB treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.