Abstract

Hydrodynamic performance is an essential factor in the design of a watercraft, and the navigation scenario determines the complexity of its operation. This study aims to identify the effect of speed and length on the hydrodynamic behavior of a semi-planing watercraft in shallow waters. A computational fluid dynamics tool was employed to predict the trim, heave, and resistance parameters of two different hulls: a base hull and a craft with an increased hull length. The two hulls had similar hydrodynamic characteristics. The effects of speed and hull length on these predicted parameters obtained for the two hulls were compared. The results showed a low resistance uncertainty and a reduction in dynamic trim for longer hull lengths. These findings highlight the importance of considering balance and dynamic trim in designing shallow-draft watercrafts to ensure an optimal performance in specific conditions, such as rivers with depth restrictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.