Abstract

A study was carried out to determine the role of additives such as Mg and Cu on the microstructural characteristics of grain refined, Sr-modified eutectic A413.1 alloy (Al-11.7% Si) during solution heat treatment. For comparison purposes, some of the alloys were also studied in the non-modified condition. The alloys were cast in a steel permanent mold preheated at 425 °C that provided a microstructure with an average dendrite arm spacing (DAS) of ~ 22 µm. Castings were solution heat treated at 500 ± 2 °C for time up 24 h, followed by quenching in warm water (at 60 °C). Microstructural analysis of the as-cast and heat-treated castings was carried out using optical microscopy in conjunction with image analysis. Phase identifications were done using the electron probe microanalysis (EPMA) technique. In the as-cast condition, the addition of 0.42 wt% Mg to the unmodified alloy produced relatively large Si particles compared to the base A413.1 alloy. The Si particle size remained more or less the same with increase in solution treatment time and Mg level. Both Mg2Si and Al2Cu phases were observed to dissolve almost completely after 8 h solution time, while the Al5Cu2Mg8Si6 phase was found to persist even after 24 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.