Abstract

During six annual drainage periods (DP O to DP 5), the drainage water, the NO 3 concentration of the drainage water and the total leached N were compared under bare soils and under ryegrass/white clover, pure ryegrass and pure white clover stands in 80 deep lysimeters with 3m 2 area. For each soil cover, the sensitivity of the variables to the soil N supplying capacity at sowing was measured, using a set up of 32 lysimeters. This initial capacity to supply mineral N (SoilN) varied from 90 to 230 kg N ha −1 year −1. The stands were managed in a simulated rotational grazing system, without addition of fertilizer N. During the first drainage period after sowing (DP 0), N leaching increased significantly with the initial SoilN under the bare soils, the pure grass and the mixture, but was not influenced under the pure clover. In the following drainage periods, N leaching increased according to the sequence pure grass (1–5 kg N ha −1 year −1), mixed swards (1–19 kg N), pure white clover (28–140 kg N) and bare soils (84–149 kgN ha −1 year −1). It was only slightly greater under the mixture than under the pure grass, despite the N harvest and the N animal returns were much higher. Under the mixed stands, N leaching became independent of the initial SoilN in DP 1 and DP 2 and decreased with increasing initial SoilN in DP 3, DP 4 and DP 5. This inversion of the SoilN effect in time and the limited amounts of leached N demonstrated that adaptations in the ecosystem tend to counteract the SoilN effect on the N losses. In the mixed stands, the accumulated N leaching represented 12 and 21% of the accumulated N at harvest for the initially rich and poor soils, respectively and 32% of the accumulated N harvest in the mixed clover, whatever the initial SoilN. N leaching also represented 13% of the urine-N above 80 kgN ha −1 year −1. The low values of N leaching under the mixed swards make them sustainable for environment quality. Mechanisms which regulate the N fluxes are discussed, using published data on the soil and some results concerning the harvests in the same experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.