Abstract

The major purpose of this research is increasing the photocatalytic activity of TiO2 nanotube arrays by doping with sodium and carbon for using in water splitting as photoanode. The synthesized TiO2 nanotubes (TNA) were characterized using FESEM (Field Emission Scanning Electron Microscope), XRD (X-ray Diffraction), DRS (Diffraction Reflection Spectroscopy) and XPS test (X-ray Photoelectron Spectroscopy) analyses. The results of FTIR and XPS confirmed the presence of sodium and carbon in the lattice of TNA as dopants. Moreover, the DRS test showed the decrease in the band gap energy of TNA from 3.20 to ∼2.88eV; uv-visible test exhibited extension in the absorption edge of pure TiO2 nanotubes from Uv-light (396nm) to visible light (488nm). In addition, the results of photoelectrochemical measurement indicated that the photocurrent density of doped TiO2 nanotubes increased about 5 times than that of the pure compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.