Abstract
ABSTRACTIt is well known that a sliding speed influences a lubricant film thickness of elastohydrodynamic rolling–sliding contacts significantly. The effect of sliding is described quite well for unidirectional rolling and sliding; however, there are a limited number of papers dealing with sliding in different directions. This study describes how the sliding direction influences elastohydrodynamic film shape under high sliding conditions. An optical ball-on-disc tribometer together with thin-film colorimetric interferometry method is used for a film thickness measurement. The results show that the sliding direction influences lubricant film shape and the effect is connected with dimple phenomena. The temperature–viscosity wedge effect is discussed as a possible mechanism. The results are important for a film thickness prediction under high sliding conditions and provide experimental evidence for an extension of elastohydrodynamic lubrication (EHL) theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.