Abstract

Metal-enhanced singlet oxygen, O2(1Δg), generation is a desirable effect to augment the amount of O2(1Δg) produced upon irradiation of organic sensitizers. Herein, we employed pectin for stabilizing 9 nm silver nanoparticles and showed that these particles are able to form a ground-sate complex with riboflavin (Rf). Pump–probe transient absorption spectroscopy and laser flash-photolysis experiments proved that the excited state of the riboflavin–Ag complex feeds the triplet state of the sensitizer, which results in an enhanced intersystem crossing process. The higher amounts of riboflavin triplet states formed in the presence of the nanoparticles result in higher yields of singlet oxygen and hydrogen peroxide produced in the irradiated colloidal suspensions. As a result, not only the effect on singlet oxygen but also the effect on superoxide radical ion should contribute to a better performance of Riboflavin as a sensitizer applied to the photodynamic therapy of tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.