Abstract

Silver decorated graphene oxide (GO) was added in poly(3,4-ethylenedioxythiopphene): poly(styrene sulfonate) (PEDOT:PSS) matrix to fabricate composite films, aiming for an improved electrical conductivity. Silver particles were deposited on GO surfaces by reaction with Tollens’ reagent. The composite films reinforced by silver decorated GO showed a sheet resistance of 744 Ω/sq. with 88.9% transparency, which outperformed PEDOT:PSS matrix and GO/PEDOT:PSS composite films. The deposited silver particles were consisted of elementary silver and positively charged silver. The GO surfaces were negatively charged. The distinction of positive domain and negative domain on silver decorated GO surfaces promoted the phase separation of conductive PEDOT molecules and insulting PSS molecules, which contributed to the increase of the electrical conductivity of the composite films. Moreover, the deposition of elementary silver introduced extra electron pathways in the composite films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.