Abstract

Doping is known to be an excellent and simple way of catalyst design. Although notable progress has been made in understanding the reactivity and catalytic activity of gas-phase and supported gold clusters, very few studies have been carried out on the doped gold clusters. In the present work, we have carried out density functional theory calculations to investigate the effect of silicon doping on the reactivity and catalytic activity of gold nanoclusters. The present work particularly focuses on the adsorption and activation of molecular oxygen on the pristine and silicon-doped gold clusters. The results confirm that the silicon-doped Au7Si cluster shows considerable binding and activation of the O2 molecule in comparison to the pristine Au8 cluster as reflected in the relevant geometrical parameters (O–O and Au–O bond lengths) and O–O stretching frequency. However, silicon doping has no contrasting effect on the reactivity and catalytic activity of the Au7 cluster. In addition to the stronger binding an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.