Abstract

Hydrogenated silicon thin films deposited by VHF PECVD process for various silane flow rates have been investigated. The silane flow rate was varied from 5 sccm to 30 sccm, maintaining all other parameters constant. The electrical, structural and optical properties of these films were systematically studied as a function of silane flow rate. These films were characterized by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy and UV–visible (UV–Vis) spectroscopy. Different crystalline volume fraction (22%–60%) and band gap (∼1.58 eV–∼1.96 eV) were achieved for silicon thin films by varying the silane concentration. A transition from amorphous to nanocrystalline silicon has been confirmed by Raman and FTIR analysis. The film grown at this transition region shows the high conductivity in the order of 10−4 Ω−1 cm−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.