Abstract

In this study, cold roll bonding process characteristics of IF steel strips, such as bond strength, threshold deformation, undulation of peeling force, and peeled surface, in the presence of SiC nanoparticles were examined and compared to those of an IF steel strip without nanoparticles. The bond strength was evaluated by the peeling test and scanning electron microscopy. It was found that when the thickness reduction was increased, the peeling force of IF steel strips improved. The results also indicated that the presence of silicon carbide nanoparticles decreased the bond strength of IF steel strips when compared to the strips without nanoparticles for the same thickness reduction. When the thickness reduction was increased, the undulation of average peeling force values increased at a constant nanoparticle content. Also, the strips without nanoparticles had a lower undulation value as compared to the strips with SiC nanoparticles. In addition, in the presence of silicon carbide, when the nanoparticles’ content was increased, the undulation of average peeling force values decreased at a constant thickness reduction. Finally, it was found that the bond strength of IF steel strips was less than that of aluminum and copper strips. This was attributed to their crystal structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.