Abstract
Macroscopic and microscopic food structural characteristics play an important role in product's technological properties and nutritional attributes. The effects of macroscopic (pasta shape, PS) and microscopic (flour particles, FP) structural attributes were independently investigated in gluten-free (GF) chickpea-corn-rice short pasta (50% chickpea) considering cooking quality, physicochemical attributes, thermal properties, in vitro digestibility of starch (IVSD) and protein (IVPD). Different PS (rigatoni, fusilli, fusilli piccolo, caserecce, gnocchetti sardi) and different chickpea FP (conventional, precooked, fine, coarse) were considered. With regards to PS effect, rigatoni-shaped pasta differed significantly from other PS having the longest cooking time, a harder and less adhesive texture, the highest gelatinization enthalpy, the lowest IVPD, and higher resistant starch content. The chickpea FP modulated the flour pasting properties and slightly impacted both pasta cooking quality and nutritional characteristics regarding IVSD and IVPD. This work suggested that pasta structural attributes, especially PS, can modify pasta cooking quality, physicochemical, and nutritional characteristics and should, therefore, be considered in rational product design to provide food products with desired properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.