Abstract

Previous studies indicate that modification of the surface of porous bioactive glass promotes osteoblast function. We hypothesize that bone formation on treated bioactive glass is due to the selective adsorption of serum attachment proteins. To test this hypothesis, we examined the profile of proteins adsorbed to treated bioactive glass and compared these proteins with those adsorbed to untreated bioactive glass and porous hydroxyapatite. Porous bioactive glass was treated with Tris-buffered electrolyte solution to generate a calcium phosphate-rich surface layer and then immersed in tissue-culture medium containing 10% serum. Proteins adsorbed to the ceramic surfaces were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. Porous hydroxyapatite bound a higher amount of total protein than did the other substrates. However, surface-modified porous bioactive glass adsorbed more fibronectin than did hydroxyapatite. The effect of serum-protein adsorption on osteoblast adhesion to bioactive glass and hydroxypatite was also evaluated. Cell adhesion to porous bioactive glass that was either surface-modified and serum-treated was significantly greater than to porous bioactive glass that was either surface-modified or serum-treated. Furthermore, cell adhesion to porous bioactive glass treated to form the dual layer of calcium phosphate and serum protein was significantly higher than adhesion to porous hydroxyapatite with adsorbed serum protein. Results of the study strongly suggest that adsorption of serum fibronectin to the surface of modified porous bioactive glass coated with calcium phosphate may be responsible for enhanced osteoblast adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.