Abstract

The effect of thermal cycling and sintering temperature on the chemical and thermodynamic stability of the bulk multiferroic xLa0.7Pb0.3MnO3–(1 – x)PbTiO3 quasi-ceramic and ceramic composites has been experimentally investigated. It is shown that the limiting temperature of the long-term sample firing should not exceed 1070 K. It has been found that sintering at this temperature and/or short-term exposure of the samples at higher temperatures (up to 1220 K) significantly increase the sample compactness, stabilize the thermal expansion, and enhance the quality of the composites. It has been established that the component grain integrity is violated by shrinkage of the samples and a sharp change in their volume during the phase transition of a ferroelectric component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.