Abstract

The influence of self-fields on the cyclotron maser instability in a hollow electron beam propagating parallel to a uniform axial magnetic field B 0 e z in a dielectric loaded waveguide is investigated. The theoretical analysis is carried out within the framework of linearized Vlasov-Maxwell equations. It is assumed that the beam is thin with the radial thickness much smaller than the beam radius. A new dispersion relation for azimuthally symmetric electromagnetic perturbation is derived and analyzed numerically. The influence of self-fields on the cyclotron maser instability in a dielectric loaded waveguide for different dielectric medium is studied. It is found that unlike the hollow waveguide the growth rate is increased by increasing self-fields. The instability band width decreases due to the increasing self-fields. The maximum growth rate increases gradually as self-fields increase as regards a different dielectric medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.