Abstract

Abstract Counter-rotating axial-flow compressor (CRAC) is a promising technology to enhance the thrust-to-weight ratio of aero-engines. Self-recirculating casing treatment (SRCT) is an efficient flow control technique for increasing stall margin in conventional compressors. With the purpose of investigating the applicability and mechanism of SRCT in the CRACs, a two-stage CRAC is selected to investigate the stability enhancement mechanism of SRCT and its effect on the unsteady flow near the rotor tip, and the effect of injector location on the stability improvement capacity of SRCT is also studied. Results show that about 7.73% stall margin improvement can be achieved by configuring the SRCT on the near rotor top, and the injector location also has a significant influence on the stability expansion potential of SRCT. The SRCT delays the stall occurrence by weakening the intensity of tip leakage flow (TLF) and restraining the leading-edge spillages of TLF. The SRCT reduces the unsteady interference between the adjacent rotors by receding the disturbance of the upstream wake and inhibiting the potential flow effect of the downstream. Furthermore, the SRCT reduces the self-excited oscillation frequency of TLF and damps its fluctuation amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.