Abstract
The ability or inability of a drug to penetrate into the brain is a key consideration in drug design. Drugs for treating central nervous system (CNS) disorders need to be able to penetrate the blood-brain barrier (BBB). BBB nonpenetration is desirable for non-CNS-targeting drugs to minimize potential CNS-related side effects. Computational methods have been employed for the prediction of BBB-penetrating (BBB+) and -nonpenetrating (BBB-) agents at impressive accuracies of 75-92% and 60-80%, respectively. However, the majority of these studies give a substantially lower BBB- accuracy, and thus overall accuracy, than the BBB+ accuracy. This work examined whether proper selection of molecular descriptors can improve both the BBB- and the overall accuracies of statistical learning methods. The methods tested include logistic regression, linear discriminate analysis, k nearest neighbor, C4.5 decision tree, probabilistic neural network, and support vector machine. Molecular descriptors were selected by using a feature selection method, recursive feature elimination (RFE). Results by using 415 BBB+ and BBB- agents show that RFE substantially improves both the BBB- and the overall accuracy for all of the methods studied. This suggests that statistical learning methods combined with proper feature selection is potentially useful for facilitating a more balanced and improved prediction of BBB+ and BBB- agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.