Abstract

AbstractTwo sequencing batch airlift reactors (SBARs) were operated simultaneously for two separate runs. In the first run, two different types of seeding sludge were cultivated in two separate reactors under the same superficial air velocity (SAV). In the second run, the same seeding sludge was cultivated in both reactors but under different SAV, i.e. 1.2 and 3.6 cm s−1. Both runs were carried out for a period of about 20 days, during which the chemical oxygen demand (COD) removal efficiency and morphology of sludge were examined. Batch tests using sodium acetate as the main carbon source were conducted to investigate the COD removal efficiency, and the morphologies of sludge were examined under light microscopy. Results showed that the COD removal efficiency improved with cultivation time. Morphological study showed that all cultivated sludge lost their filamentous species after a few days of cultivation, leaving behind communities of loosely packed pellet‐like groups. Although the SAV recommended by other researchers was applied to the SBAR, granulation did not take place at the end of both experimental runs. It was suspected that the failure for aerobic sludge to granulate under the selected operating strategies and reactor configuration was partly due to the intrinsic traits of the sludge microbial community. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.