Abstract

The effects of the secondary crystal orientations on the nickel-based single-crystal superalloy turbine blades were investigated. The stress concentration features were used for investigation of the optimal secondary crystal orientation leading to the higher strength of the single-crystal turbine blades. The crystal plastic finite element method coupled with micromechanics constitutive model is applied to study the effect of secondary crystal orientation on plastic deformation and mechanical behavior around the cooling holes and notches with the primary (load) orientation fixed at [001] direction. For nickel-based superalloy plates with holes or notches, the secondary crystal orientation effect on the strength needs to be clarified at various load levels. The maximum von Mises stress in the single-crystal alloy varies significantly with variation in the secondary crystal orientations. It was found that only two slip systems dominate the deformation process of the material owing to their favorable orientation with loading. The secondary orientation of 45° was identified with lowest resolved shear stress in the dominating slip systems and potential of producing higher strength for single-crystal turbine blades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.