Abstract

Objectives: The purpose of this study is to investigate the effect of remaining dentin thickness and the use of a 20% polyalkenoic acid conditioner on the micro-tensile bond strength of a glass-ionomer adhesive to dentin. Methods: Resin composite was bonded to flat dentin surfaces from 14 extracted human teeth using Fuji BOND LC (GC) with or without a polyalkenoic acid conditioner, then sectioned to thin slabs, trimmed into an hourglass shape with the area of the interface being approximately 1 mm 2, and subjected to micro-tensile testing at a cross-head speed of 1 mm/min. Micro-tensile bond strengths were determined at three depth levels with a remaining dentin thickness of more than 3 mm, between 2 and 3 mm, and less than 2 mm. Failure modes of the broken interfaces were determined using field-emission scanning electron microscopy. Results: The micro-tensile bond strength to dentin significantly improved when the remaining dentin thickness increased and the conditioner was used. When the conditioner was used (irrespective of remaining dentin thickness), failures mainly occurred adhesively at the interface between the adhesive and resin composite. When no conditioner was used, no adhesive failures between the adhesive and resin composite occurred, but failures occurred mainly adhesively between dentin and the adhesive, or mixed adhesive-cohesively. Significance: The bonding effectiveness of the glass-ionomer adhesive tested was affected by the area of intertubular dentin available for micro-mechanical retention through hybrid-layer formation. Removal of the smear layer improved the bond strength of the adhesive to dentin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.