Abstract
Pyridine and quinoline are typical nitrogenous heterocyclic compounds with different structures that are found in coking wastewater. However, neither the corresponding mechanism nor its effect on the degradation of NH4+-N under phenol stress is known. In this study, the effects of pyridine and quinoline degradation on NH4+-N removal under phenol stress were evaluated using three lab-scale sequencing batch reactors. The average NH4+-N removal efficiencies of the reactors were 99.46 %, 88.86 %, and 98.64 %. With the increased concentration of pyridine and quinoline, NH4+-N and NO3--N accumulated to 58.37 mg/L and 141.37 mg/L, respectively, due to the lack of an electron donor and anaerobic environment. The addition of pyridine and quinoline significantly improved antioxidant response and altered the nitrification pathway. The nitrification process shifted from the mediation of amo and hao to the mediation of Ncd2 due to oxidative stress induced by pyridine and quinoline. Furthermore, oxidative stress interferes with the metabolism of carbon sources, resulting in decreased biomass. These results provide a new perspective for coking wastewater treatment processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.