Abstract

The strain rate and the characteristics of the jumps at micro- and nanolevels were measured by the high-precision interferometric method for a wood-plastic composite irradiated to doses of 0–100 kGy. Radiation was shown to strengthen the material and change the characteristics of strain rate and value jumps. Strain jumps and mean-square deviations of the measured strain rate from its smoothened time dependence were determined for micro- and nanosized jumps. The change of these characteristics depending on the radiation dose of specimens was traced. A relation between the characteristics of micrometer jumps and the macroscopic strain was revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.