Abstract
Understanding thermos-physical properties of MMCs includes considering interfacial processes and interactions between the constituents in MMCs. In this context, interfacial bonding is of vital interest for a deeper understanding of composites. Neutron diffraction experiments on Al/diamond composites were performed and reconciled with their thermo-physical properties and quantification of interfacial carbides formation. To create different interfacial conditions both, the contact time during processing the MMCs by liquid metal infiltration and the nominal composition of the matrix were changed, thus creating different amounts of interfacial Al4C3 carbides. Neutron diffraction showed the increase in contact time and the addition of Si to Al both increase the bonding strength, although going with a significant decrease of the composite`s thermal conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.