Abstract

Miscanthus had a higher lignin content (19.5 wt%) and carbohydrate (67.6 wt%) than other herbaceous crops, resulting in higher pellet strength and positive effect on combustion. However, miscanthus also contains a high amount of hydrophobic waxes on its outer surface, cuticula, which limits the pellet quality. The glass transition of lignin and cuticula were related to forming inter-particle bonding, which determined mechanical properties of pellet. To determine the effects of surface waxes, both on the pelletizing process and the pellet strength were compared with raw and extracted samples through solvent extraction. In addition, to clarify the relationship between pellet process parameters and bonding mechanisms, the particle size and temperature are varied while maintaining the moisture content of the materials and the die pressure at constant values. Furthermore, kraft lignin was employed to determine the effect of kraft lignin as an additive in the pellets. As results, the removal of cuticula through ethanol extractions improved the mechanical properties of the pellet by the formation of strong inter-particle interactions. Interestingly, the presence of lignin in miscanthus improves its mechanical properties and decreases friction against the inner die at temperatures above the glass transition temperature (Tg) of lignin. Consequently, it could found that the use of kraft lignin as an additive in pellet reduced friction in the inner die upon reaching its glass transition temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.