Abstract

Room-temperature fatigue tests were conducted on Ti 834 with prior creep strains accumulated under constant load at 550 °C and 600 °C, respectively. Microstructural and fractographic examinations on specimens with prior creep strain > 3% revealed the failure process consisting of multiple surface crack nucleation and internal void generation by creep, followed by fatigue crack propagation in coalescence with the internally distributed damage, leading to the final fracture. The amount of prior creep damage increased with creep strain. The fatigue life of Ti 834 was significantly reduced by prior creep straining. The behavior is rationalized with the integrated creep-fatigue theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.