Abstract

The objectives were to assess the effect of post-thaw in vitro incubation on motion characteristics and acrosomal integrity of ram spermatozoa of native Malpura and Bharat Merino breeds maintained under a semi-arid tropical environment. Good quality semen samples of both breeds were diluted, packaged in medium-sized straws, and frozen under controlled conditions. Straws were thawed at 60°C for 10s and thawed samples were incubated at 37°C for 4h. Post-thaw motion characteristics and acrosomal integrity of incubated spermatozoa were assessed (by computer-aided semen analysis and Giemsa staining, respectively) just prior to incubation and at hourly intervals thereafter. There was a significant effect of incubation time on motility characteristics and the proportion of spermatozoa with normal acrosomes; 81.4% (arcsin transformed value, 65.2) of spermatozoa were motile at the start of incubation, with 47.9% (arcsin transformed value, 44.4) motile after 4h. At the corresponding times, there were normal acrosomes in 65.8 (arcsin transformed value, 54.8) and 55.7% (arcsin transformed value, 48.9) of spermatozoa, respectively. The percentage straightness of spermatozoa varied during incubation (P<0.01). However, there was no significant change in percentage linearity, curvilinear velocity, average path velocity, straight line velocity, lateral head displacement, and beat cross frequency of spermatozoa during incubation. There were no breed variations in any motility parameters during incubation, except percentage straightness (P<0.05), lateral head displacement (P<0.05) and beat cross frequency (P<0.01). That sperm motility and acrosomal morphology were very acceptable immediately post-thaw and after 4h of incubation indicated the efficacy of cryopreserving ram spermatozoa under controlled conditions in medium-sized straws.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.