Abstract

Near-infrared (NIR) optically active nanoparticles are promising exogenous chromophores for applications in medical imaging and phototherapy. Since nanoparticles can be rapidly eliminated from the body by cells of the reticuloendothelial system, a thriving strategy to increase their blood circulation time is through surface modification with polyethylene glycol (PEG). We constructed polymeric nanocapsules loaded with indocyanine green (ICG), an FDA-approved NIR dye, and coated with aldehyde-terminated PEG. Using optical absorbance spectroscopy and flow cytometry, we investigated the effect of PEG coating and molecular weight (MW) of PEG [5000 and 30,000 Daltons (Da)] on the phagocytic content of human spleen macrophages incubated with ICG-containing nanocapsules (ICG-NCs) between 15 to 360 min. Our results indicate that surface coating with PEG is an effective method to reduce the phagocytic content of ICG-NCs within macrophages for at least up to 360 min of incubation time. Coating the surface of ICG-NCs with the low MW PEG results in lower phagocytic content of ICG-NCs within macrophages for at least up to 60 min of incubation time as compared to ICG-NCs coated with the high MW PEG. Surface coating of ICG-NCs with PEG is a promising approach to prolong vasculature circulation time of ICG for NIR imaging and phototherapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.