Abstract

The grafting of silane groups on clay surfaces has been recently investigated in order to fabricate versatile compounds with new potential applications in materials science and ecological engineering. This work explored the influence of variety of solvents with variable polarity on the silanization of halloysite nanoclay (HNT) surface by (3-Glycidyloxy propyl) trimethoxy silane. To this purpose, the functionalization of HNT by 3-Glycidyloxypropyltrimethoxysilane (GOPTMS) has been conducted in Ethanol (polar protic solvent), Tetrahydrofuran (THF) and Acetonitrile (polar aprotic solvents), and Hexane, 1,4-Dioxane and Toluene (non polar solvents). The silane grafted materials were characterized by using several techniques, including Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis, Scanning Electron Microscopy (SEM), Thermogravimetry (TGA), X-ray Diffraction Analysis (XRD) and Nitrogen adsorption/desorption isotherms. The largest silane loading has been detected for the hybrid nanomaterials prepared in Hexane as a dispersing medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.